Hallucinatory palinopsia and paroxysmal oscillopsia as initial manifestations of sporadic Creutzfeldt-Jakob disease: A case study
|
01.03.2020 |
Lahiri D.
Dubey S.
Ray B.
Ardila A.
|
Cortex |
10.1016/j.cortex.2019.11.017 |
0 |
Ссылка
© 2019 Elsevier Ltd Background: Heidenhain variant of Cruetzfeldt Jacob Disease is a rare phenotype of the disease. Early and isolated visual symptoms characterize this particular variant of CJD. Other typical symptoms pertaining to muti-axial neurological involvement usually appear in following weeks to months. Commonly reported visual difficulties in Heidenhain variant are visual dimness, restricted field of vision, agnosias and spatial difficulties. We report here a case of Heidenhain variant that presented with very unusual symptoms of palinopsia and oscillopsia. Case presentation: A 62-year-old male patient presented with symptoms of prolonged afterimages following removal of visual stimulus. It was later on accompanied by intermittent sense of unstable visual scene. He underwent surgery in suspicion of cataratcogenous vision loss but with no improvement in symptoms. Additionally he developed symptoms of cerebellar ataxia, cognitive decline and multifocal myoclonus in subsequent weeks. On the basis of suggestive MRI findings in brain, typical EEG changes and a positive result of 14-3-3 protein in CSF, he was eventually diagnosed as sCJD. Conclusion: This case adds to the tally of handful reports of Heidenhain variant CJD in literature, particularly from India. Two atypical initial symptoms, namely hallucinatory palinopsia and paroxysmal oscillopsia were observed in the index case. Possible explanations of such phenomena in CJD have been explored in light of the available studies.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
|
15.02.2020 |
Deyev S.
Vorobyeva A.
Schulga A.
Abouzayed A.
Günther T.
Garousi J.
Konovalova E.
Ding H.
Gräslund T.
Orlova A.
Tolmachev V.
|
International Journal of Biological Macromolecules |
10.1016/j.ijbiomac.2019.12.147 |
0 |
Ссылка
© 2018 The Authors Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
|
15.02.2020 |
Deyev S.
Vorobyeva A.
Schulga A.
Abouzayed A.
Günther T.
Garousi J.
Konovalova E.
Ding H.
Gräslund T.
Orlova A.
Tolmachev V.
|
International Journal of Biological Macromolecules |
10.1016/j.ijbiomac.2019.12.147 |
0 |
Ссылка
© 2018 The Authors Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
|
15.02.2020 |
Deyev S.
Vorobyeva A.
Schulga A.
Abouzayed A.
Günther T.
Garousi J.
Konovalova E.
Ding H.
Gräslund T.
Orlova A.
Tolmachev V.
|
International Journal of Biological Macromolecules |
10.1016/j.ijbiomac.2019.12.147 |
0 |
Ссылка
© 2018 The Authors Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
|
15.02.2020 |
Deyev S.
Vorobyeva A.
Schulga A.
Abouzayed A.
Günther T.
Garousi J.
Konovalova E.
Ding H.
Gräslund T.
Orlova A.
Tolmachev V.
|
International Journal of Biological Macromolecules |
10.1016/j.ijbiomac.2019.12.147 |
0 |
Ссылка
© 2018 The Authors Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
|
15.02.2020 |
Deyev S.
Vorobyeva A.
Schulga A.
Abouzayed A.
Günther T.
Garousi J.
Konovalova E.
Ding H.
Gräslund T.
Orlova A.
Tolmachev V.
|
International Journal of Biological Macromolecules |
10.1016/j.ijbiomac.2019.12.147 |
0 |
Ссылка
© 2018 The Authors Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|
Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1
|
15.02.2020 |
Deyev S.
Vorobyeva A.
Schulga A.
Abouzayed A.
Günther T.
Garousi J.
Konovalova E.
Ding H.
Gräslund T.
Orlova A.
Tolmachev V.
|
International Journal of Biological Macromolecules |
10.1016/j.ijbiomac.2019.12.147 |
0 |
Ссылка
© 2018 The Authors Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Читать
тезис
|
Octacalcium phosphate coating for 3D printed cranioplastic porous titanium implants
|
15.02.2020 |
Smirnov I.
Deev R.
Bozo I.
Fedotov A.
Gurin A.
Mamonov V.
Kravchuk A.
Popov V.
Egorov A.
Komlev V.
|
Surface and Coatings Technology |
10.1016/j.surfcoat.2019.125192 |
0 |
Ссылка
© 2019 Elsevier B.V. In the present study, porous three-dimensional (3D) printed titanium (Ti) implants of complex shape and predefined architecture were produced by selective laser sintering (SLS) technique. Electrochemical deposition combined with biomimetic approach was applied to low-temperature coating of these implants with metastable octacalcium phosphate (OCP) achieved via chemical transformation of dicalcium phosphate dehydrate (DCPD). X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and compressive strength analyses were applied to study the chemical composition, morphology and mechanical properties of the final OCP coating on the titanium surface. In vivo comparative study of the porous 3D printed Ti and OCP coated Ti implants has been performed using critical-size crania model, porous 3D printed Ti and coated implants were compared. A statistically significant difference in the newly formed bone thickness for OCP coated Ti implants was detected already at 6 weeks after implantation. Our results provide an experimental proof of a new concept of OCP coating for cranioplasty clinical applications.
Читать
тезис
|
The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy
|
15.02.2020 |
Gerasimenko A.
Ten G.
Ryabkin D.
Shcherbakova N.
Morozova E.
Ichkitidze L.
|
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
10.1016/j.saa.2019.117682 |
0 |
Ссылка
© 2019 Elsevier B.V. The results of the study of composites based on bovine serum albumin (BSA) and single-walled carbon nanotubes (SWCNT) are presented. Nanocomposites were created by evaporation of the water-albumin dispersion with nanotubes using diode laser with temperature control. Two types of nanotubes were used. SWCNT I were synthesized using the electric arc method, SWCNT II were synthesized using the gas phase method. SWCNT I had a diameter and length less than SWCNT II. The mechanism of interaction between BSA and SWCNT in solid nanocomposites is considered. An experimental and theoretical studies of the interaction between aspartic (Asp) and glutamic (Glu) amino acids located on the outer surface of BSA and nanotubes using of vibrational spectroscopy (Fourier-transform infrared (FTIR) and Raman spectroscopy) was carried out. The possibility of nanotubes functionalization by oxygen atoms of negative amino acid residues Asp and Glu, which are on the outer surface of BSA, is shown by molecular modeling. The formation of covalent bonds between BSA and SWCNT in nanocomposites with different concentrations of nanotubes (0.01, 0.1 and 1 g/l) was confirmed by vibrational spectra. The covalent interaction between BSA with SWCNT under the laser irradiation leads to the conformational changes in the secondary and tertiary structures of albumin. This is confirmed by a significant decrease in the intensity of the absorption bands in the high-frequency region. The calculation of the vibrational spectra of the three Glycine:Glycine, Glutamic acid:Threonine and Aspartic acid:Lysine complexes, which take into account hydrogen, ion-dipole and ion-ion bonds, showed that a disturbance in the intermolecular interaction between amino acid residues led to significant decrease in the intensity of absorption bands in the region of stretching vibrations bonds OH and NH. From the Raman spectra, it was found that a significant number of defects in SWCNT is caused by the covalent attachment of oxygen atoms to the graphene surface of nanotubes. An increase in the diameter of nanotubes (4 nm) has practically no effect on the absorption spectrum of nanocomposite, while measuring the concentration of SWCNT affects the FTIR spectra. This confirmed the hydrophobic interaction between BSA and SWCNT. Thus, it was shown that BSA solid nanocomposites with CNTs can interact either with the help of hydrophobic forces or with the formation of covalent bonds, which depends on the diameter of the used nanotubes. The viability of connective fibroblast tissue cells on nanocomposites with both types of SWCNT was demonstrated. It was found that nanocomposites based on SWCNT I provide slightly better compatibility of their structure with fibroblasts. It allows to achieve better cell adhesion to the nanocomposite surface. These criteria make extensive use of scaffold nanocomposites in biomedicine, depending on the requirements for their quality and application.
Читать
тезис
|