The effects of manganese overexposure on brain health
|
01.05.2020 |
Miah M.
Ijomone O.
Okoh C.
Ijomone O.
Akingbade G.
Ke T.
Krum B.
da Cunha Martins A.
Akinyemi A.
Aranoff N.
Antunes Soares F.
Bowman A.
Aschner M.
|
Neurochemistry International |
10.1016/j.neuint.2020.104688 |
0 |
Ссылка
© 2020 Elsevier Ltd Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Читать
тезис
|
Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers
|
01.05.2020 |
Kurochkin M.
Sindeeva O.
Brodovskaya E.
Gai M.
Frueh J.
Su L.
Sapelkin A.
Tuchin V.
Sukhorukov G.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.110664 |
0 |
Ссылка
© 2020 Elsevier B.V. Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.
Читать
тезис
|
The effects of manganese overexposure on brain health
|
01.05.2020 |
Miah M.
Ijomone O.
Okoh C.
Ijomone O.
Akingbade G.
Ke T.
Krum B.
da Cunha Martins A.
Akinyemi A.
Aranoff N.
Antunes Soares F.
Bowman A.
Aschner M.
|
Neurochemistry International |
10.1016/j.neuint.2020.104688 |
0 |
Ссылка
© 2020 Elsevier Ltd Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Читать
тезис
|
Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers
|
01.05.2020 |
Kurochkin M.
Sindeeva O.
Brodovskaya E.
Gai M.
Frueh J.
Su L.
Sapelkin A.
Tuchin V.
Sukhorukov G.
|
Materials Science and Engineering C |
10.1016/j.msec.2020.110664 |
0 |
Ссылка
© 2020 Elsevier B.V. Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.
Читать
тезис
|
Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations
|
01.05.2020 |
Colbasevici A.
Voskoboynikova N.
Orekhov P.
Bozdaganyan M.
Karlova M.
Sokolova O.
Klare J.
Mulkidjanian A.
Shaitan K.
Steinhoff H.
|
Biochimica et Biophysica Acta - Biomembranes |
10.1016/j.bbamem.2020.183207 |
0 |
Ссылка
© 2020 Elsevier B.V. Amphiphilic maleic acid-containing copolymers account for a recent methodical breakthrough in the study of membrane proteins. Their application enables a detergent-free extraction of membrane proteins from lipid bilayers, yielding stable water-soluble, discoidal lipid bilayer particles with incorporated proteins, which are wrapped with copolymers. Although many studies confirm the potential of this approach for membrane protein research, the interactions between the maleic acid-containing copolymers and extracted lipids, as well as possible effects of the copolymers on lipid-embedded proteins deserve further scrutinization. Here, we combine electron paramagnetic resonance spectroscopy and coarse-grain molecular dynamics simulations to compare the distribution and dynamics of lipids in lipid particles of phospholipid bilayers encased either by an aliphatic diisobutylene/maleic acid copolymer (DIBMALPs) or by an aromatic styrene/maleic acid copolymer (SMALPs). Nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels experience restrictions of their reorientational motion depending on the type of encasing copolymer. The dynamics of the lipids was less constrained in DIBMALPs than in SMALPs with the affinity of spin labeled lipids to the polymeric rim being more pronounced in SMALPs.
Читать
тезис
|
Effect of Mn substitution on the crystal and magnetic structure of Bi<inf>1−x</inf>Ca<inf>x</inf>FeO<inf>3−x/2</inf> multiferroics
|
01.05.2020 |
Khomchenko V.
Karpinsky D.
Bushinsky M.
Zhaludkevich D.
Franz A.
Silibin M.
|
Materials Letters |
10.1016/j.matlet.2020.127470 |
0 |
Ссылка
© 2020 Elsevier B.V. The room- and low-temperature neutron diffraction measurements of the Bi0.9Ca0.1Fe0.6Mn0.4O3+δ compound have been carried out to disclose the influence of Mn substitution on the multiferroic properties of the low-doped Bi1−xCaxFeO3−x/2 perovskites combining ferroelectric and weak ferromagnetic behavior. It has been proven that the material under study retains a polar R3c structure specific to the parent Bi0.9Ca0.1FeO2.95. The Mn doping results in the elimination of oxygen vacancies giving rise to the increase in spontaneous electric polarization. The chemical modification stabilizes the collinear antiferromagnetic structure at room temperature. The reorientation of the antiferromagnetic vector from the c to a axis takes place with decreasing temperature. Reflecting the competitive character of the superexchange interactions between Fe3+, Mn3+ and Mn4+, the coexistence of ferromagnetic glassy and antiferromagnetic long-range-ordered phases is observed at low temperatures.
Читать
тезис
|
Dental anomalies in people living in radionuclide-contaminated regions
|
01.05.2020 |
Sevbitov A.
Kuznetsova M.
Dorofeev A.
Borisov V.
Mironov S.
Yusupova L.
|
Journal of Environmental Radioactivity |
10.1016/j.jenvrad.2020.106190 |
0 |
Ссылка
© 2020 Elsevier Ltd The 1986 accident at the Chernobyl Nuclear Power Plant led to large-scale changes in the environmental situation. The purpose of our study was to conduct a comparative analysis of the morphological states of the dentition of individuals living in regions exposed to radiation to determine the groups at risk for the main classes of dental anomalies. We believe our results will support the development of a differentiated system for dental rehabilitation and follow-up of individuals exposed to radiation. The prevalence rate of dental anomalies was studied in 1,889 patients of both sexes divided by age in accordance with dentition formation stages and by regions of residence in accordance with the 137Cs soil-contamination level. A statistically significant decrease was observed in the number of patients with normal dentition for their age among those who had been exposed to prenatal radiation. A sharp increase in combined dental anomalies was revealed in patients who lived in regions with a137Cs soil-contamination level ranging from 555 to 1665 GBq/km2; concomitantly, multidirectional fluctuations were observed in the numbers of tooth and occlusion anomalies. Among the examined population, the most severe pathology of the oral organs was found in prenatally irradiated patients (born between April 26, 1986, and April 30, 1987). The prevalence of dental anomalies is interrelated not only with the level of radioactive contamination in the soil of the dwelling area, but also with the age of the surveyed individuals at the moment of the accident.
Читать
тезис
|
Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice
|
01.05.2020 |
Morbiato E.
Bilel S.
Tirri M.
Arfè R.
Fantinati A.
Savchuk S.
Appolonova S.
Frisoni P.
Tagliaro F.
Neri M.
Grignolio S.
Bertolucci C.
Marti M.
|
NeuroToxicology |
10.1016/j.neuro.2020.02.003 |
0 |
Ссылка
© 2020 The Authors The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.
Читать
тезис
|
Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice
|
01.05.2020 |
Morbiato E.
Bilel S.
Tirri M.
Arfè R.
Fantinati A.
Savchuk S.
Appolonova S.
Frisoni P.
Tagliaro F.
Neri M.
Grignolio S.
Bertolucci C.
Marti M.
|
NeuroToxicology |
10.1016/j.neuro.2020.02.003 |
0 |
Ссылка
© 2020 The Authors The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.
Читать
тезис
|
Antibacterial activity profile of miramistin in in vitro and in vivo models
|
01.05.2020 |
Agafonova M.N.
Kazakova R.R.
Lubina A.P.
Zeldi M.I.
Nikitina E.V.
Balakin K.V.
Shtyrlin Y.G.
|
Microbial Pathogenesis |
10.1016/j.micpath.2020.104072 |
0 |
Ссылка
© 2020 Background: Miramistin is a widely used antiseptic, disinfectant and preservative, and one of the most popular antimicrobial agents on pharmaceutical market of the Russian Federation ( http://www.dsm.ru/en/news/385/). However, there is a lack of reported systematic data on antibacterial efficacy of this agent obtained in accordance with the international standards. Aim: This paper represents a systematic study of antibacterial properties of miramistin. Another objective of this work is to evaluate and compare the exploratory performance of in vitro and in vivo protocols of antiseptics’ efficacy testing using miramistin as the reference antiseptic. Methods: Antibacterial activity of 0.1% and 0.2% aqueous solutions of miramistin against two museum strains of S. aureus (ATCC 209p) and E. coli (CDC F-50) was studied. Three standard in vitro laboratory tests (microdilution test, suspension test, and metal surface test), and one in vivo test (on rat's skin) were used. The study was conducted in accordance with the international regulatory documents. Results: Miramistin showed high bactericidal activity against the studied bacterial pathogens in the standard in vitro tests. Thus, in the microdilution test it showed expressed activity against S. aureus (MIC 8 μg/ml, MBC 16 μg/ml) and E. coli (MIC 32 μg/ml, MBC 128 μg/ml). In the suspension test, miramistin decreased the amount of colony forming units by at least 6 log10 units for S. aureus, and by at least 4.5 log10 units for E. coli. Transition to the metal surface test led to significant decrease of antibacterial activity by 1–3 log10 units as compared to the suspension test. Further dramatic reduction of antiseptic activity (by 3–4 log10 units) was observed in in vivo rat skin test. Addition of a protein contaminant (bovine serum albumin) led to a general decrease in the effectiveness of miramistin against the test pathogens (typically, by 1–2 log10 units). An interesting effect of exposure time-dependent reversal of miramistin's specificity to the studied Gram-positive S. aureus and the Gram-negative E. coli organisms was observed in the metal surface test. Conclusions: The results of this work provide systematic data on antibacterial efficacy of miramistin. They also underscore the need in relevant in vivo models for evaluation of antiseptics' efficacy. While the existing in vitro methods can be successfully applied at the discovery stages, it is necessary to use more realistic in vivo models at more advanced development stages. The observed selectivity reversal effect should be taken into account when carrying out the antiseptics’ efficacy testing and surface disinfection procedures.
Читать
тезис
|
Antibacterial activity profile of miramistin in in vitro and in vivo models
|
01.05.2020 |
Agafonova M.N.
Kazakova R.R.
Lubina A.P.
Zeldi M.I.
Nikitina E.V.
Balakin K.V.
Shtyrlin Y.G.
|
Microbial Pathogenesis |
10.1016/j.micpath.2020.104072 |
0 |
Ссылка
© 2020 Background: Miramistin is a widely used antiseptic, disinfectant and preservative, and one of the most popular antimicrobial agents on pharmaceutical market of the Russian Federation ( http://www.dsm.ru/en/news/385/). However, there is a lack of reported systematic data on antibacterial efficacy of this agent obtained in accordance with the international standards. Aim: This paper represents a systematic study of antibacterial properties of miramistin. Another objective of this work is to evaluate and compare the exploratory performance of in vitro and in vivo protocols of antiseptics’ efficacy testing using miramistin as the reference antiseptic. Methods: Antibacterial activity of 0.1% and 0.2% aqueous solutions of miramistin against two museum strains of S. aureus (ATCC 209p) and E. coli (CDC F-50) was studied. Three standard in vitro laboratory tests (microdilution test, suspension test, and metal surface test), and one in vivo test (on rat's skin) were used. The study was conducted in accordance with the international regulatory documents. Results: Miramistin showed high bactericidal activity against the studied bacterial pathogens in the standard in vitro tests. Thus, in the microdilution test it showed expressed activity against S. aureus (MIC 8 μg/ml, MBC 16 μg/ml) and E. coli (MIC 32 μg/ml, MBC 128 μg/ml). In the suspension test, miramistin decreased the amount of colony forming units by at least 6 log10 units for S. aureus, and by at least 4.5 log10 units for E. coli. Transition to the metal surface test led to significant decrease of antibacterial activity by 1–3 log10 units as compared to the suspension test. Further dramatic reduction of antiseptic activity (by 3–4 log10 units) was observed in in vivo rat skin test. Addition of a protein contaminant (bovine serum albumin) led to a general decrease in the effectiveness of miramistin against the test pathogens (typically, by 1–2 log10 units). An interesting effect of exposure time-dependent reversal of miramistin's specificity to the studied Gram-positive S. aureus and the Gram-negative E. coli organisms was observed in the metal surface test. Conclusions: The results of this work provide systematic data on antibacterial efficacy of miramistin. They also underscore the need in relevant in vivo models for evaluation of antiseptics' efficacy. While the existing in vitro methods can be successfully applied at the discovery stages, it is necessary to use more realistic in vivo models at more advanced development stages. The observed selectivity reversal effect should be taken into account when carrying out the antiseptics’ efficacy testing and surface disinfection procedures.
Читать
тезис
|
Antibacterial activity profile of miramistin in in vitro and in vivo models
|
01.05.2020 |
Agafonova M.N.
Kazakova R.R.
Lubina A.P.
Zeldi M.I.
Nikitina E.V.
Balakin K.V.
Shtyrlin Y.G.
|
Microbial Pathogenesis |
10.1016/j.micpath.2020.104072 |
0 |
Ссылка
© 2020 Background: Miramistin is a widely used antiseptic, disinfectant and preservative, and one of the most popular antimicrobial agents on pharmaceutical market of the Russian Federation ( http://www.dsm.ru/en/news/385/). However, there is a lack of reported systematic data on antibacterial efficacy of this agent obtained in accordance with the international standards. Aim: This paper represents a systematic study of antibacterial properties of miramistin. Another objective of this work is to evaluate and compare the exploratory performance of in vitro and in vivo protocols of antiseptics’ efficacy testing using miramistin as the reference antiseptic. Methods: Antibacterial activity of 0.1% and 0.2% aqueous solutions of miramistin against two museum strains of S. aureus (ATCC 209p) and E. coli (CDC F-50) was studied. Three standard in vitro laboratory tests (microdilution test, suspension test, and metal surface test), and one in vivo test (on rat's skin) were used. The study was conducted in accordance with the international regulatory documents. Results: Miramistin showed high bactericidal activity against the studied bacterial pathogens in the standard in vitro tests. Thus, in the microdilution test it showed expressed activity against S. aureus (MIC 8 μg/ml, MBC 16 μg/ml) and E. coli (MIC 32 μg/ml, MBC 128 μg/ml). In the suspension test, miramistin decreased the amount of colony forming units by at least 6 log10 units for S. aureus, and by at least 4.5 log10 units for E. coli. Transition to the metal surface test led to significant decrease of antibacterial activity by 1–3 log10 units as compared to the suspension test. Further dramatic reduction of antiseptic activity (by 3–4 log10 units) was observed in in vivo rat skin test. Addition of a protein contaminant (bovine serum albumin) led to a general decrease in the effectiveness of miramistin against the test pathogens (typically, by 1–2 log10 units). An interesting effect of exposure time-dependent reversal of miramistin's specificity to the studied Gram-positive S. aureus and the Gram-negative E. coli organisms was observed in the metal surface test. Conclusions: The results of this work provide systematic data on antibacterial efficacy of miramistin. They also underscore the need in relevant in vivo models for evaluation of antiseptics' efficacy. While the existing in vitro methods can be successfully applied at the discovery stages, it is necessary to use more realistic in vivo models at more advanced development stages. The observed selectivity reversal effect should be taken into account when carrying out the antiseptics’ efficacy testing and surface disinfection procedures.
Читать
тезис
|
Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments
|
01.05.2020 |
Hassanzadeh-Barforoushi A.
Warkiani M.E.
Gallego-Ortega D.
Liu G.
Barber T.
|
Biosensors and Bioelectronics |
10.1016/j.bios.2020.112113 |
0 |
Ссылка
© 2020 Elsevier B.V. Cancer cells continuously secrete inflammatory biomolecules which play significant roles in disease progression and tumor metastasis toward secondary sites. Despite recent efforts to capture cancer cells' intercellular secretion heterogeneity using microfluidics, the challenges in operation of these systems as well as the complexity of designing a biosensing assay for long-term and real-time measurement of single cell secretions have become grand research barriers. Here, we present a new capillary-based microfluidic biosensing approach to easily and reliably capture ~500 single cells inside isolated dead-end nanoliter compartments using simple pipette injection, and quantify their individual secretion dynamics at the single cell resolution over a long period of culture (~16 h). We first present a detailed investigation of the fluid mechanics underlying the formation of nanoliter compartments in the microfluidic system. Based on the measurement of single cell capture efficiency, we employ a one-step FRET-based biosensor which monitors the single cancer cells' protease activity. The sensor reports the fluorescent signal as a product of amino acid chain cleavage and reduction in its quenching capability. Using the single cell protease secretion data, we identified modes of cell secretion dynamics in our cell sample. While most of the cells had low secretion levels, two other smaller and more aggressive secretion dynamics were cells with secretion modes that include sharp spikes or slow but progressive trend. The method presented here overcomes the difficulties associated with performing single cell secretion assays, enabling a feasible and reliable technique for high throughput measurement of metabolic activities in cancer cells.
Читать
тезис
|
Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments
|
01.05.2020 |
Hassanzadeh-Barforoushi A.
Warkiani M.E.
Gallego-Ortega D.
Liu G.
Barber T.
|
Biosensors and Bioelectronics |
10.1016/j.bios.2020.112113 |
0 |
Ссылка
© 2020 Elsevier B.V. Cancer cells continuously secrete inflammatory biomolecules which play significant roles in disease progression and tumor metastasis toward secondary sites. Despite recent efforts to capture cancer cells' intercellular secretion heterogeneity using microfluidics, the challenges in operation of these systems as well as the complexity of designing a biosensing assay for long-term and real-time measurement of single cell secretions have become grand research barriers. Here, we present a new capillary-based microfluidic biosensing approach to easily and reliably capture ~500 single cells inside isolated dead-end nanoliter compartments using simple pipette injection, and quantify their individual secretion dynamics at the single cell resolution over a long period of culture (~16 h). We first present a detailed investigation of the fluid mechanics underlying the formation of nanoliter compartments in the microfluidic system. Based on the measurement of single cell capture efficiency, we employ a one-step FRET-based biosensor which monitors the single cancer cells' protease activity. The sensor reports the fluorescent signal as a product of amino acid chain cleavage and reduction in its quenching capability. Using the single cell protease secretion data, we identified modes of cell secretion dynamics in our cell sample. While most of the cells had low secretion levels, two other smaller and more aggressive secretion dynamics were cells with secretion modes that include sharp spikes or slow but progressive trend. The method presented here overcomes the difficulties associated with performing single cell secretion assays, enabling a feasible and reliable technique for high throughput measurement of metabolic activities in cancer cells.
Читать
тезис
|
Vitreous humor endogenous compounds analysis for post-mortem forensic investigation
|
01.05.2020 |
Pigaiani N.
Bertaso A.
De Palo E.F.
Bortolotti F.
Tagliaro F.
|
Forensic Science International |
10.1016/j.forsciint.2020.110235 |
0 |
Ссылка
© 2020 Elsevier B.V. The chemical and biochemical analysis of bodily fluids after death is an important thanatochemical approach to assess the cause and time since death. Vitreous humor (VH) has been used as a biofluid for forensic purposes since the 1960s. Due to its established relevance in toxicology, a literature review highlighting the use of VH with an emphasis on endogenous compounds has not yet been undertaken. VH is a chemically complex aqueous solution of carbohydrates, proteins, electrolytes and other small molecules present in living organisms; this biofluid is useful tool for its isolated environment, preserved from bacterial contamination, decomposition, autolysis, and metabolic reactions. The post-mortem analysis of VH provides an important tool for the estimation of the post-mortem interval (PMI), which can be helpful in determining the cause of death. Consequently, the present review evaluates the recent chemical and biochemical advances with particular importance on the endogenous compounds present at the time of death and their modification over time, which are valuable for the PMI prediction and to identify the cause of death.
Читать
тезис
|
Vitreous humor endogenous compounds analysis for post-mortem forensic investigation
|
01.05.2020 |
Pigaiani N.
Bertaso A.
De Palo E.F.
Bortolotti F.
Tagliaro F.
|
Forensic Science International |
10.1016/j.forsciint.2020.110235 |
0 |
Ссылка
© 2020 Elsevier B.V. The chemical and biochemical analysis of bodily fluids after death is an important thanatochemical approach to assess the cause and time since death. Vitreous humor (VH) has been used as a biofluid for forensic purposes since the 1960s. Due to its established relevance in toxicology, a literature review highlighting the use of VH with an emphasis on endogenous compounds has not yet been undertaken. VH is a chemically complex aqueous solution of carbohydrates, proteins, electrolytes and other small molecules present in living organisms; this biofluid is useful tool for its isolated environment, preserved from bacterial contamination, decomposition, autolysis, and metabolic reactions. The post-mortem analysis of VH provides an important tool for the estimation of the post-mortem interval (PMI), which can be helpful in determining the cause of death. Consequently, the present review evaluates the recent chemical and biochemical advances with particular importance on the endogenous compounds present at the time of death and their modification over time, which are valuable for the PMI prediction and to identify the cause of death.
Читать
тезис
|
Surfactants-assisted preparation of BiVO<inf>4</inf> with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties
|
05.04.2020 |
Wu Z.
Xue Y.
He X.
Li Y.
Yang X.
Wu Z.
Cravotto G.
|
Journal of Hazardous Materials |
10.1016/j.jhazmat.2020.122019 |
0 |
Ссылка
© 2020 Elsevier B.V. The development of a highly efficient and rapid method for the accurate preparation of photocatalysts with novel morphologies is a hot research topic. The different morphologies of BiVO4 was prepared using surfactants-assisted microwave method, and demonstrated irregular (no surfactant), octahedral (sodium dodecyl benzene sulfonate), olive-like (polyvinylpyrrolidone) and hollow structures (ethylenediaminetetraacetic acid), respectively. The BiVO4-CdS were synthesized using the chemical-bath-deposition method with different morphologies of BiVO4 as the substrates. The hollow structure of BiVO4 displayed the highest photocatalytic performance. Moreover, the photodegradation rates of the hollow structure BiVO4-CdS on tetracycline hydrochloride and ciprofloxacin were about 1.8 and 1.5 times higher than the corresponding BiVO4, indicating that the Z-scheme heterojunction can improve the photogenerated electron pairs separation efficiency. Furthermore, the regulation mechanism of morphology and energy-band position, as produced using the surfactants, has also been thoroughly investigated in this work, which provides a novel insight into the efficient and rapid preparation of photocatalysts with special morphology and high performance.
Читать
тезис
|
Greenhouse gas-producing soil biological activity in burned and unburned forests along a transect in European Russia
|
01.04.2020 |
Goncharov A.
Gongalsky K.
Yazrikova T.
Kostina N.
Korobushkin D.
Makarov M.
Zaitsev A.
|
Applied Soil Ecology |
10.1016/j.apsoil.2019.103491 |
0 |
Ссылка
© 2020 Elsevier B.V. It is not clear which mechanisms are responsible for changing soil biological activity following a fire. To address this knowledge gap, we measured such parameters of soil biological activity as flux rates of CH4, and CO2 and identified key environmental parameters that can influence soil biological activity. Soil samples were collected in burned and adjacent unburned control forests, along a 3000 km-long north-south transect in European Russia. A raw biological activity of tested soil samples varied significantly between forest types, but not between burned and control forest stands. Linear mixed effect modeling demonstrated a striking contrast in the importance of different drivers in sustaining a soil biological activity in the burned and control forests. The optimal model of basal soil respiration consisted of: “Soil moisture” (26%), “Fire treatment × Soil moisture × Labile soil N:P ratio” (21%), and “Fire treatment × Labile soil C × Labile soil N:P ratio” (13%). The model for CH4 in turn was defined by interactions of bulk and labile soil C with soil moisture and other factors. Our study clearly demonstrated that forest fires affect soil biological activity rather indirectly through modifying soil properties. The results enable forecasting post-fire effects on soil functioning in a changing climate under varied fire regimes.
Читать
тезис
|
Lung epithelium damage in COPD – An unstoppable pathological event?
|
01.04.2020 |
Hadzic S.
Wu C.
Avdeev S.
Weissmann N.
Schermuly R.
Kosanovic D.
|
Cellular Signalling |
10.1016/j.cellsig.2020.109540 |
0 |
Ссылка
© 2020 Elsevier Inc. Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Читать
тезис
|
Ultrasonic-assisted modifications of macroporous resin to improve anthocyanin purification from a Pyrus communis var. Starkrimson extract
|
01.04.2020 |
Belwal T.
Li L.
Yanqun X.
Cravotto G.
Luo Z.
|
Ultrasonics Sonochemistry |
10.1016/j.ultsonch.2019.104853 |
0 |
Ссылка
© 2019 Elsevier B.V. The present study presents an attempt to modify the surface properties of macroporous resins (MRs) in order to improve anthocyanin adsorption and desorption from Pyrus communis var Starkrimson fruit peel extract. A number of MRs were tested to optimise the ultrasonic-assisted adsorption (UAA) conditions; including ultrasonic power (100–400 W), resin-to-extract ratio (1–3 g/50 mL) and temperature (20–40 °C). Similarly, varying ultrasonic-assisted desorption (UAD) conditions were optimised; including ultrasonic power (200–600 W), resin-to-solvent ratio (1–4 g/50 mL), ethanol concentration (60–90% v/v) and temperature (20–40 °C). The Amberlyst 15 (H) cationic resin was found to be superior to the other tested resins. The maximum adsorption capacity (659 µg/g) of cyanidin 3-galactoside (Cy 3-gal) was achieved under the optimised UAA conditions (400 W, 20 °C and 1 g/50 mL), while 616 µg/g of Cy 3-gal was recovered under the optimised UAD conditions (582 W, 1 g/50 mL, 60% and 20 °C). Moreover, titratable-acid and total-sugar contents were found to be significantly lower under UAA than under conventional-assisted adsorption (CAA). ANOVA revealed that process factors had significant effects on the Cy 3-gal purification, as depicted by their linear, quadratic and interactive effects. While anthocyanin adsorption was found to be significantly improved at lower ultrasonic power, higher power promoted the desorption process. Adsorption under optimized UAA conditions followed pseudo second-order kinetics and multilayer adsorption (Freundlich isotherm) onto the Amberlyst 15 (H) resin surface was observed. The particle-size distribution curve and scanning electron microscopic images also revealed higher resin-surface roughness, peeling and the appearance of pores on the surface under ultrasonication. This is the first study to use ultrasonication to modify a cationic exchange resin for the improvement of Cy 3-gal purification from a fruit extract. This study can recommend the use of ultrasonication as a low-cost green technique that can improve macroporous resin characteristics for better purification of compounds from an extract.
Читать
тезис
|